Nov 08, 18: #AnalyticsClub #Newsletter (Events, Tips, News & more..)

[  COVER OF THE WEEK ]

image
Data security  Source

[ LOCAL EVENTS & SESSIONS]

More WEB events? Click Here

[ AnalyticsWeek BYTES]

>> Oracle zeroes in on Hadoop data with analytics tool by analyticsweekpick

>> 7 Lessons From Apple To Small Business by v1shal

>> The Business of Data by analyticsweekpick

Wanna write? Click Here

[ NEWS BYTES]

>>
 Can artificial intelligence help stop religious violence? – BBC News Under  Artificial Intelligence

>>
 How to Leverage True Edge Flexibility and Overcome Operational Challenges – Data Center Frontier (blog) Under  Data Center

>>
 Big Data Analytics in Healthcare Market Global 2018: Sales, Market Size, Market Benefits, Upcoming Developments … – Alter Times Under  Prescriptive Analytics

More NEWS ? Click Here

[ FEATURED COURSE]

Statistical Thinking and Data Analysis

image

This course is an introduction to statistical data analysis. Topics are chosen from applied probability, sampling, estimation, hypothesis testing, linear regression, analysis of variance, categorical data analysis, and n… more

[ FEATURED READ]

Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython

image

Python for Data Analysis is concerned with the nuts and bolts of manipulating, processing, cleaning, and crunching data in Python. It is also a practical, modern introduction to scientific computing in Python, tailored f… more

[ TIPS & TRICKS OF THE WEEK]

Data Have Meaning
We live in a Big Data world in which everything is quantified. While the emphasis of Big Data has been focused on distinguishing the three characteristics of data (the infamous three Vs), we need to be cognizant of the fact that data have meaning. That is, the numbers in your data represent something of interest, an outcome that is important to your business. The meaning of those numbers is about the veracity of your data.

[ DATA SCIENCE Q&A]

Q:Is it better to design robust or accurate algorithms?
A: A. The ultimate goal is to design systems with good generalization capacity, that is, systems that correctly identify patterns in data instances not seen before
B. The generalization performance of a learning system strongly depends on the complexity of the model assumed
C. If the model is too simple, the system can only capture the actual data regularities in a rough manner. In this case, the system poor generalization properties and is said to suffer from underfitting
D. By contrast, when the model is too complex, the system can identify accidental patterns in the training data that need not be present in the test set. These spurious patterns can be the result of random fluctuations or of measurement errors during the data collection process. In this case, the generalization capacity of the learning system is also poor. The learning system is said to be affected by overfitting
E. Spurious patterns, which are only present by accident in the data, tend to have complex forms. This is the idea behind the principle of Occam’s razor for avoiding overfitting: simpler models are preferred if more complex models do not significantly improve the quality of the description for the observations
Quick response: Occam’s Razor. It depends on the learning task. Choose the right balance
F. Ensemble learning can help balancing bias/variance (several weak learners together = strong learner)
Source

[ VIDEO OF THE WEEK]

Solving #FutureOfOrgs with #Detonate mindset (by @steven_goldbach & @geofftuff) #FutureOfData #Podcast

 Solving #FutureOfOrgs with #Detonate mindset (by @steven_goldbach & @geofftuff) #FutureOfData #Podcast

Subscribe to  Youtube

[ QUOTE OF THE WEEK]

War is 90% information. – Napoleon Bonaparte

[ PODCAST OF THE WEEK]

@AlexWG on Unwrapping Intelligence in #ArtificialIntelligence #FutureOfData #Podcast

 @AlexWG on Unwrapping Intelligence in #ArtificialIntelligence #FutureOfData #Podcast

Subscribe 

iTunes  GooglePlay

[ FACT OF THE WEEK]

In the developed economies of Europe, government administrators could save more than €100 billion ($149 billion) in operational efficiency improvements alone by using big data, not including using big data to reduce fraud and errors and boost the collection of tax revenues.

Sourced from: Analytics.CLUB #WEB Newsletter

Leave a Reply

Your email address will not be published. Required fields are marked *